\begin{tabbing} R{-}self{-}interface($R$) \\[0ex]$\,\equiv$$_{\mbox{\scriptsize def}}$$\;\;$es\_realizer\_ind(\=$R$;\+ \\[0ex]True; \\[0ex]${\it left}$,${\it right}$,${\it rec}_{1}$,${\it rec}_{2}$.(${\it rec}_{1}$ $\wedge$ ${\it rec}_{2}$); \\[0ex]${\it loc}$,$T$,$x$,$v$.True; \\[0ex]${\it loc}$,$T$,$x$,$L$.True; \\[0ex]${\it lnk}$,${\it tag}$,$L$.True; \\[0ex]${\it loc}$,${\it ds}$,${\it knd}$,$T$,$x$,$f$.True; \\[0ex]${\it ds}$,${\it knd}$,$T$,$l$,${\it dt}$,$g$.(($\uparrow$isrcv(${\it knd}$)) \\[0ex]$\Rightarrow$ (lnk(${\it knd}$) = $l$) \\[0ex]$\Rightarrow$ subtype\_rel(fpf{-}cap(${\it dt}$; id{-}deq; tag(${\it knd}$); void); $T$)); \\[0ex]${\it loc}$,${\it ds}$,$a$,$T$,$P$.True; \\[0ex]${\it loc}$,$k$,$L$.True; \\[0ex]${\it loc}$,$k$,$L$.True; \\[0ex]${\it loc}$,$x$,$L$.True) \- \end{tabbing}